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Abstract

Cancer treatment remains a central challenge in the field of
medicine. Cancer drug response prediction is a fundamen-
tal task at the intersection of medicine and computer science,
which opens up opportunities and possibilities that can sig-
nificantly impact cancer treatment. Currently, various model
methods have been developed to select drugs based on cancer
and cell line types, enhancing the efficiency of cancer treat-
ment. However, the challenge of missing drug response val-
ues due to unknown cancer or tumors remains unsolved, pos-
ing a significant hurdle to cancer treatment. In response to
this, we propose a model to predict drug response values. This
model will initially apply various feature representations to
the input data, generating corresponding embeddings. Then,
the predicted drug response values are generated according
to the views which are created to examine the interrelation-
ships among these representations. Finally, we conduct our
experiments on real data sets and give relevant experimental
conclusions to verify the performance and accuracy of our
model.

Introduction
At present, many methods have been proposed for the treat-
ment of major diseases such as cancer and tumors, offering
new opportunities and possibilities in the realm of disease
treatment(Verma 2012). Nevertheless, there are still chal-
lenges in the treatment process, exerting a significant impact
on its efficacy(Zugazagoitia et al. 2016).The variability of
cell lines underscores the need for customized drug treat-
ments that may differ across various types of cancer or cell
lines (Baptista, Ferreira, and Rocha 2021).The heterogeneity
in drug response presents a formidable challenge in the treat-
ment process, as even identical drugs can produce different
outcomes when administered to diverse patients or cancer
types. It not only fails to yield the desired therapeutic effect
but may also worsen the patient’s condition. Furthermore,
many drugs cannot be universally effective for various types
of cancer experienced by patients.

Given the availability of numerous public data sets, partic-
ularly clinical data sets, including but not limited to cell line
databases, cancer genome databases, cancer drug databases,
etc., it provides an opportunity for us to propose or enhance
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the existing cancer drug prediction models. This innovative
approach to cancer treatment holds the potential to signif-
icantly advance cancer treatment research, offering greater
prospects for the treatment of major diseases such as cancer
or tumors.

Currently, many models have been proposed, which use
cell line information and drug molecular information as in-
puts to predict the drug response (CDR) value of cancer (Ye
et al. 2021). This also includes machine learning models
(Chen and Zhang 2021) such as Ridge Regression (Geele-
her, Cox, and Huang 2014), MOLI (Sharifi-Noghabi et al.
2019), and DeepCDR (Liu et al. 2020).

In fact, in the treatment of unknown cancers or tumors,
the absence of CDR values is a common occurrence, of-
ten attributed to the natural variability of these responses.
This phenomenon is also recognized as a manifestation of
the challenge known as ”missing view values” in multi-view
learning (Chao and Sun 2019). However, the lack of CDR
values seriously increases the difficulty of the treatment of
this cancer or tumor, which means that we need a predictive
model with robust performance and high accuracy. It can
predict the CDR value of different drugs based on unknown
cancer or tumor. The greater the accuracy of the predictive
model, the more effective the treatment for the cancer or tu-
mor becomes. However, there is still room for improvement
in the performance or efficiency of current methods, because
they are still missing or inaccurate in predicting CDR value
of certain types of cancer.

In summary, our primary objective is the prediction of
Cancer Drug Response (CDR) values. The motivation for
selecting this problem stems from the current convergence
of cancer drug response prediction and machine learning,
which has evolved into a burning issue recently. As we see,
many machine learning models have been proposed to pre-
dict the drug response value of cancer. From a more macro-
scopic perspective, research in this particular domain offers
some key advantages: it can propel advancements in the
medical treatment of cancer, enhance the efficacy of treat-
ment, improve patient-specific drug selection, reduce du-
ration of treatment, among others. These inherent benefits
make this a compelling area of study with significant impli-
cations.



Related work
The major challenge in drug response prediction lies in the
fusion of heterogeneous data from multiple sources. Tech-
nically, the significant differences in the data structure, di-
mensionality, signal-to-noise ratio, and complexity of multi-
omics data pose a great challenge in representation learning.

Deep learning methods were generally based on combina-
tions or stacks of Convolutional Neural Network (CNN), Re-
current Neural Network (RNN), and attention mechanisms.
MVLR (Ammad-Ud-Din et al. 2017) proposed a multi-view
multi-task model based on functional link networks, which
treated different data sources as independent feature sets.
CDRScan (Chang et al. 2018) used stacked CNNs to map
inputted cell line data and molecular drug data to their cor-
responding CDR value. MOLI (Sharifi-Noghabi et al. 2019)
used triplet loss to receive the integrated outputs of several
different neural networks, where a network was applied to
a kind of input data. DeepCDR (Liu et al. 2020) utilized
graph convolution network (GCN) to process drug molec-
ular information, and merged it with cell line multi-omics
data to predict CDR values. DeepDSC (Li et al. 2019) used
stacked encoders to extract genomics from gene expression
data, and then chemical characteristics of drugs were jointed
to generate response values. (Lee et al. 2022) advanced a
”gene-centric multi-channel” (GCMC) model, which em-
ploys 3D tensor transformation for a more potent integra-
tion of multi-omics data in drug response predictions. More-
over, (Sagingalieva et al. 2023) developed the Hybrid Quan-
tum Neural Network (HQNN), indicating a 15% improve-
ment in predictability for IC50 values over traditional meth-
ods, thereby enhancing training efficiency. Meanwhile, (Liu,
Tong, and Chen 2023) introduced a multi-view method that
efficiently leverages multi-view information through a self-
attention mechanism coupled with multi-scale fusion, sig-
nificantly augmenting feature representations.

A major contribution is the GraphCDR model as proposed
by (Liu et al. 2022), which leverages a graph neural network
to amalgamate multi-omics profiles of cancer cell lines, drug
compositions, and disclosed responses. The model uniquely
integrates a contrastive learning task utilized as a regularizer,
effectively optimizing the model’s learning capability. In
scenarios where validated responses are absent, GraphCDR
proves its worth by adeptly utilizing biochemical informa-
tion in accurately predicting CDR for uncharted cell lines
and drugs. An additional valuable contribution is the auto-
mated Cancer Drug Response Prediction framework via a
Graph Neural Network (GNN) model, known as AutoCDRP,
as published by (Oloulade et al. 2023). This model employs
a surrogate model tailored to estimate the performance of
GNN structures randomly selected from a predefined search
space, thereby facilitating the selection of the most ideal ar-
chitecture based on evaluation performance. Furthermore,
(Wang et al. 2023) developed the XMR model, an innova-
tive multimodal neural network model, constructed via a fu-
sion of a visible and a graph neural network. This model,
specifically conceived for predicting drug responses target-
ing Triple-Negative Breast Cancer, acknowledges the inter-
connectedness of genomic attributes and drug structural fea-
tures. The visible neural network encapsulates the genomic

characteristics, whilst the graph neural network administers
the drugs’ chemical composition.

Collectively, these studies underline the profound poten-
tial of neural networks in drug response prediction, provid-
ing fresh pathways for refining and customizing cancer treat-
ments. However, these methods commonly ignore the view
value missing problem from unknown cell lines of cancers
or tumors. We plan to fuse multi-omics data in a multi-view
framework to alleviate the view missing problem and gener-
ate accurate predictions.

Method
This section introduces BoyNet. BoyNet consists of three
stages: input data representation, view generation, and view
combination. The general framework of BoyNet is shown in
Figure 1.

Firstly, all input data are transformed into latent space us-
ing an embedding representation, as these multi-omics data
and drug feature data is heterogeneous and cannot be inter-
connected to connect their corresponding response values.
The data representation operation is displayed to the left of
Figure 1. Secondly, generate several views to receive embed-
ded features, and then calculate potential interactions. The
goal of these views is to observe potential reactions between
cell lines and drugs through embedding or feature observa-
tion. These views are displayed in the middle of Figure 1.

Finally, combine these views and pass them through lin-
ear layers to obtain a CDR prediction map, and compare it
with the true values for backpropagation; this operation is
displayed on the right side of Figure 1.

Molecular data representation
Mutation embedding Mutation data is a sequence com-
posed of {0, 1} symbols, with mutation locations marked
by symbol 1. The definition of mutation embedding pro-
cess is as follows: Em = F (M), where Ne represents the
size of embedding, Nx is the maximum number of muta-
tion positions in the cell line, M ∈ RNc×Nm is a mutation
sequence, Em ∈ RNc×Nx×Ne represents mutation embed-
ding, whereNc represents the number of cell lines, and Nm

represents the total number of mutation sites.

Genetic expression features The gene expression char-
acteristics are composed of a series of continuous values.
The definition of embedding operation is as follows: Ep =
F (P ), P ∈ RNc×Np is a mutated sequence, Ep ∈ RNc×Ne

represents compressed expression features, where Np repre-
sents the number of genes in a single cell line.

Methylation features The methylation feature is also
composed of a series of continuous variables. The defini-
tion of compression operation is as follows: Ej = F (J),
J ∈ RNc×Nj is a mutated sequence, Ej ∈ RNc×Ne repre-
sents the compressed methylation feature, where Nj repre-
sents the number of methylation sites.

Cell line latent features and drug latent features De-
compose the CDR matrix into potential features of cell lines
and potential features of drugs. The operation definition is
as follows: Ec,Ed = F (R), where R is the observed CDR
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Figure 1: The graphical illustration of the proposed Biological Multi-Omics SYnergy Network(BoyNet)

value, Ec ∈ RNc×Ne is a potential feature of the cell line,
Ed ∈ RNd×Ne represents the potential feature of the drug,
where Nd represents the number of drugs.

Drug molecular embeddings Drug molecules are com-
posed of multiple atoms, each with similar characteristics,
which is also a sequence of {0, 1} symbols. Molecules are
also represented by embedding and are represented as fol-
lows: Ef = F (F ), where F ∈ RNd×Na×Nf is a molecular
characteristic tensor, Ef ∈ RNd×Na×Nf×Ne is a mutation
embedding.

View generation
In order to observe the interaction between cell line informa-
tion and drug information, five views were generated to learn
the potential relationships between multiple sets of data

View 1 Learning the interconnection between cell lines
and their mutations. Given a cell line c, the result of view
1 is represented as follows:

O1 ← V 1
(
Em

c,:,:,E
c
c,:

)
(1)

View 2 Learning the relationship between genomic mu-
tations and drug molecular characteristics. Given a cancer
drug pair (c, d), the results of View 2 can be represented as
follows:

O2 ← V 2
(
Em

c,:,E
f
d,:,:,:

)
(2)

View 3 learns the connection between expression and
methylation. The result of view 3 can be represented as fol-
lows:

O3 ← V 3
(
Ep

c,:,E
j
c,:

)
(3)

View 4 The relationship between the cell line latent matrix
and the drug latent matrix for learning decomposition. The
result of view 4 can be represented as follows:

O4 = Ec
c,: ·Ed

d,: (4)

View 5 learns the interconnection between potential drug
features and drug molecular features. The result is repre-
sented as:

O5 ← V 5
(
Ed

d,:,E
f
d,:,:,:

)
(5)

We use inner product to implement all view generation
processes

View combination
We collected the outputs of the five views mentioned above
and obtained

O =
[
O1, O2, O3, O4, O5

]
(6)

Where O ∈ R1×(Nx+Na∗Nf∗2+2) represents the connected
view output, which is finally received by two consecutive
linear layers to generate the final prediction.



(a) non-overlapping cell line split. (b) non-overlapping drug split. (c) random split.

Figure 2: Box-plots of seven methods in terms of PCC. (a) split based on non-overlapping cell lines. (b) split based on non-
overlapping drugs. (c) random split

Experiment
This section introduces datasets, performance measure-
ments, comparable methods, results and model configura-
tions. The performance competition is provided in the per-
spective of prediction performance.

datasets
We sourced raw data from eminent bioinformatics
databases, including the Cancer Cell Line Encyclopedia
(CCLE), which provides a comprehensive catalogue of can-
cer cell line models. Our analysis was centered on multi-
omics data for three specific cell lines, encompassing gene
expression, methylation, and mutation. Furthermore, we uti-
lized The Cancer Genome Atlas (TCGA), an extensive
repository of human cancer genomes, which includes data
on mutations, mRNA, miRNA expression, and methylation.
Additionally, the Genomics of Drug Sensitivity in Cancer
(GDSC) served as a critical public resource, offering a vast
array of IC50 values that correlate with cellular and drug
pairings. The chemical database PubChem, which is the
largest of its kind globally, supplied structural data for a
multitude of drugs. Our dataset comprised data from 494
distinct cell lines, 237 drugs, and 94,314 observed response
measures, with approximately 29% of the data missing. We
collated comprehensive gene expression data (494 × 697 di-
mensions), methylation data (494 × 808 dimensions), and
gene mutation data (494 × 34673 dimensions).

Competition models
1. Matrix Factorization (MF) (Wang, Chen, and He 2018)

a well-known method commonly applied in forecast-
ing user-item ratings within recommender systems , is
utilized here for the prediction of CDR values, i.e.,
ln(IC50).

2. Multiple Linear Regression (MLR) (Geeleher, Cox, and
Huang 2014) establishes linear relationships by linking
each element of the input with the corresponding output

elements. These input elements comprise gene expres-
sion, methylation, genetic mutations, and characteristics
of drugs.

3. CDRScan (Chang et al. 2018) published several ver-
sions1. The three versions with relative good per-
formance were employed as comparable methods.
CDRScan-Master employs a pair of stacked CNNs to
process molecular fingerprints and genomic mutations,
thereby encoding drug and cancer profiles. These en-
coded representations are then inputted into a third
stacked CNN. In contrast, CDRScan-Shallow features
fewer layers in this third CNN stack, opting instead
to incorporate a greater number of linear layer opera-
tions. Meanwhile, CDRScan-FullConnected substitutes
the third stacked CNN entirely with fully connected
layers. For convenience, CDRScan-Master, CDRScan-
Shallow, and CDRScan-FullConnected are presented by
CDRScan-M, CDRScan-S, and CDRScan-FC, respec-
tively.

4. DeepCDR (Liu et al. 2020) leverages CNNs and GCNs
to process multi-omics data of cell lines and chemical
features of drugs, respectively. The codes are available at
github.com2.

model configurations
For fair competition on all models, the batch size is set to
64. The Adam (Kingma and Ba 2015) optimizer is adopted
to train all the models. All the compared models are im-
plemented in PyTorch 1.8.2 (LTS), and are ran four graph-
ics processing units of NVIDIA Tesla V100. Moreover, the
comparable models have achieved the same accuracy as their
corresponding literature. All the size of latent features and
the size of embeddings are set to 20. The MF is solely
based on interaction data, i.e., IC50. The MLR, DeepCDR,
CDRScan use all the molecular level data as input and cor-

1http://github.com/summatic/CDRScan
2http://github.com/kimmo1019/DeepCDR



(a) non-overlapping cell line split. (b) non-overlapping drug split. (c) random split.

Figure 3: The visualized correlations between observed CDR values and predicted CDR values in terms of three train/test split
methods.

responding observed IC50 as target. All these methods are
running on the same 10-fold cross-validation.

comparisons
A variety of metrics are employed to gauge the predictive
performance of the ln(IC50) values. In this study, we uti-
lized a widely recognized measure: the Pearson Correlation
Coefficient (PCC), as suggested by Liu et al.

PCC =

∑
(c,d)∈T

(
Rc,d − R̄

) (
R̂c,d − ˆ̄R

)
√∑

(c,d)∈T

(
Rc,d − R̄

)2√∑
(c,d)∈T

(
R̂c,d − ˆ̄R

)2

(7)
where T is the testing set, Rc,d is a real value, R̂c,d is a
predicted value, R̄ is the mean value in the testing set, and
ˆ̄R is the mean value of predicted CDR values.

For fair competition, all the comparable methods were ran
on common tasks. The experimental results are shown in
Figure 2. When observing at the metric on three groups of
data, the proposed BoyNet has the best performance for all
metrics when compared with other methods. Compared with
BoyNet, MF ignores the intrinsic characteristics of drugs
and cell lines, the predictions are generated based on the
learned latent features. This reveals the impact of molecular
data. For CDRScan-FC, more linear layers bring better sta-
bility but may affect the model’s ability to capture nonlinear
features. For CDRScan-S, fewer convolutional units reduce
the accuracy. Compared with CDRScan, DeepCDR simpli-
fies the processing of omics data, which can fuse more omics
data. DeepCDR achieves third-best performance, somehow
owning to the benefits from GCN on drug molecular repre-
sentation. There is still a gap between DeepCDR and MF.
A possible reason for this improvement is that latent inter-
actions are much more important than feature representation
only. BoyNet shows the best performance. It uses an embed-
ding component to encode the input data, which compresses
the high-dimensional input data into a low-dimensional fea-
ture space and filters out fluctuations. This allows BoyNet to

quickly and efficiently complete the extraction of low- and
high-order latent interactions.

prediction analyses

Three groups of validation experiments on the proposed
BoyNet were visualized using scatter plots, see Figure 3.
The CDR values of new cell lines are visualized in Figure
3a. The CDR values of new drug are visualized in Figure
3b. The CDR values of known cell lines and known drugs
are visualized in Figure 3c. Due to the lengthy nature of dis-
playing the plots for 10-fold predictions, we have selected
a random single result from each set of the 10-fold datasets
for presentation.

When examining the PCC values across the three subfig-
ures, it is evident that they maintain a narrow range of vari-
ance. The devised BoyNet technique demonstrates a profi-
cient capability in addressing the challenge of missing view
values. The substantial correlation exhibited by the PCC val-
ues between the actual and forecasted values signifies the
BoyNet method’s superior predictive precision. One plausi-
ble explanation for this phenomenon could be that elevated
concentrations are indicative of diminished performance.
Across all examined datasets, responses that are classified
as ineffective outnumber those that are effective.

Conclusions

Our work on the Biological Multi-Omics Synergy Net-
work (BoyNet) represents a step forward in the field of
cancer-drug-response (CDR) prediction. BoyNet introduces
a method for addressing the challenge of missing CDR val-
ues in less studied cancer types or tumors by employing
equal-dimensionality embeddings to create a more compre-
hensive data analysis framework. Our results show promise
in enhancing the accuracy of drug response predictions for a
range of cancer cases, which may assist in the development
of more tailored treatment plans for patients. BoyNet will
serve as a useful reference for further research targeting the
optimization of tumor treatment approaches.
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